"the teperature of the outlet of th.

“property for intial condation” P_o=101[kpa]”the intial pressure” T_n=25[C]”the initial temperature” h_o=enthalpy(w$,P=P_o,T=T_n)”the initial enthalpy” s_o=entropy(w$,P=P_o,T=T_n)”the initial entrapy” T_cond=40[C]”the teperature of the outlet of the condeser” h_cond=enthalpy(w$,P=P_o,T=T_cond)”the enthalpy of the outlet condenser” s_cond=entropy(w$,P=P_o,T=T_cond)”the entrapy of the outlet condenser” “given parameter” w$=’water’ eta=0.90″the entrapy” m_dot=50[kg/s]”the mass flow rate” T_O=293[K]”the intial tempeature in K” “parameter for point 5″ P_5=12000[kpa]”the pressure at point 5” T_5=550[C];{T_5=550[C]}; “the temperature at poit 5″ h_in_5=enthalpy(w$,P=P_5,T=T_5)”the enthalpy at point 5″ s_5=entropy(w$,P=P_5,T=T_5)”the entropy at point 5″ v_5=volume(w$,P=P_5,T=T_5)”the volume at point 5″ u_5=intenergy(w$,P=P_5,T=T_5)”the internal energy at point 5” “parameter for point 7″ P_7=5000[kpa]”the pressure at point7″ T_7=550[C]”the temperature at poit 7″ h_in_7=enthalpy(w$,P=P_7,T=T_7)”the enthalpy at point 7″ s_7=entropy(w$,P=P_7,T=T_7)”the entropy at point 7″ v_7=volume(w$,P=P_7,T=T_7)”the volume at point 7″ u_7=intenergy(w$,P=P_7,T=T_7)”the internal energy at point 7” “parameter for point 6″ P_6=P_7″the pressure at point 5″ s_6s=s_5″entropy at point 7″ h_out_6s=enthalpy(w$,P=P_7,s=s_6s)”enthalpy at point 6s” eta=(h_in_5-h_out_6)/(h_in_5-h_out_6s)”the enthalpy h6″ s_6=entropy(w$,P=P_6,h=h_out_6)”the entropy s6″ v_6=volume(w$,P=P_6,h=h_out_6)”the volume v6″ u_6=intenergy(w$,P=P_6,h=h_out_6)”the internal energy 6″ T_6=temperature(w$,P=P_6,h=h_out_6)”the temperature 6″ “parameter for point 8″ P_8=1000[kpa]”the pressure p8″ s_8s=s_7″the enterpy ideal 8″ h_out_8s=enthalpy(w$,P=P_8,s=s_8s)”the enthalpy ideal 8″ eta=(h_in_7-h_out_8)/(h_in_7-h_out_8s)”the enthalpy 8″ s_8=entropy(w$,P=P_8,h=h_out_8)”the entropy 8″ v_8=volume(w$,P=P_8,h=h_out_8)”the volume 8″ u_8=intenergy(w$,P=P_8,h=h_out_8)”the internal energy 8″ T_8=temperature(w$,P=P_8,h=h_out_8)”the temperature 8” “parameter for point 9″ P_9=20[kpa]”the pressure of point 9″ s_9s=s_8″the enropy 9s” h_out_9s=enthalpy(w$,P=P_9,s=s_9s)”the enthalpy h9s” eta=(h_out_8-h_out_9)/(h_out_8-h_out_9s)”the enthalpy 9″ s_9=entropy(w$,P=P_9,h=h_out_9)”the entropy 9″ v_9=volume(w$,P=P_9,h=h_out_9)”the volume 9″ u_9=intenergy(w$,P=P_9,h=h_out_9)”the internal energy 9″ T_9=temperature(w$,P=P_9,h=h_out_9)”the temperature 9″ “parameter for point 1″ X_1=0″the quality of point 1″ h_in_1=enthalpy(w$,x=X_1,P=P_9)”the enthalpy of point 1″ s_1=entropy(w$,x=X_1,P=P_9)”the entropy of q” v_1=volume(w$,x=X_1,P=P_9)”the volume of point 1″ u_1=intenergy(w$,x=X_1,P=P_9)”the internal energy of point 1″ T_1=temperature(w$,x=X_1,P=P_9)”the teplerature of point 1″ P_1=P_9″pressure 1″ “parameter for point 3″ X_3=X_1″the quality of point 3″ h_in_3=enthalpy(w$,x=0,P=P_8)”the enthalpy of point 3″ s_3=entropy(w$,x=0,P=P_8)”the entropy of point 3″ T_3=temperature(w$,x=0,P=P_8)”the teperature of point 3″ P_3=P_8″the pressure of point 3″ v_3=volume(w$,x=X_3,P=P_8)”the volume of point 3″ u_3=intenergy(w$,x=X_3,P=P_8)”the internal energy of point 3” “parameter for point 4″ P_4=P_5″the pressure of point 5″ T_4=temperature(w$,h=h_4,P=P_4)”the teperature of point 4″ v_4=volume(w$,h=h_4,P=P_4)”the volume of point 4″ u_4=intenergy(w$,h=h_4,P=P_4)”the internal energy of point 4″ s_4=entropy(w$,h=h_4,P=P_4)”the entropy of point 4” “parameter for point 11″ P_11=P_5″the pressure of point 11″ s_11s=s_3″the entropy ideal of point 11 ” h_out_11s=enthalpy(w$,P=p_5,s=s_11s)”the enthalpy ideal” eta=(h_out_11s-h_in_3)/(h_out_11-h_in_3)”the enthalpy h11″ v_11=volume(w$,h=h_out_11,P=P_11)”the volume of point 11″ u_11=intenergy(w$,h=h_out_11,P=P_11)”the internal energy of point 11″ T_11=temperature(w$,h=h_out_11,P=P_11)”the teperature of point 11″ s_11=entropy(w$,h=h_out_11,P=P_11)”the entropy of point 11″ “parameter for point 10″ P_10=P_5″the pressure of point 10″ h_10=enthalpy(w$,P=P_10,T=T_3)”the enthalpy of point 10″ v_10=volume(w$,P=P_10,T=T_3)”the volume of point 10″ u_10=intenergy(w$,P=P_10,T=T_3)”the internal energy of point 10″ T_10=T_3″the temperature of point 10″ s_10=entropy(w$,P=P_10,T=T_3)”the entropy of point 10” “parameter for point 2″ P_2=P_5″the pressure of point 2″ s_2s=s_1″the entropy of point 2s” h_out_2s=enthalpy(w$,P=P_5,s=s_2s)”the enthalpy of point 2s” eta=(h_out_2s-h_in_1)/(h_out_2-h_in_1)”the enthalpy of point 2″ v_2=volume(w$,h=h_out_2,P=P_2)”the volume of point 2″ u_2=intenergy(w$,h=h_out_2,P=P_2)”the internal energy of point 2″ T_2=temperature(w$,h=h_out_2,P=P_2)”the temperature of point 2″ s_2=entropy(w$,h=h_out_2,P=P_2)”the entropy of point 2″ “important equation1″ m_dot*(1-y)*h_out_9+m_cond*h_o=m_dot*(1-y)*h_in_1+m_cond*h_cond”calculating the mass coming out of the condenser” j=m_cond/m_dot”the ratio between mass of the coming into condencer and out” “important equation” y*h_out_8+(1-y)*h_out_2=(1-y)*h_10+y*h_in_3″calculating the value of y” (1-y)*h_10+y*h_out_11=h_4*1″calculating the value of h4″ W_dot_out=(h_in_5-h_out_6)+(h_in_7-h_out_8)+(1-y)*(h_out_8-h_out_9)”the total work out” W_dot_in=(1-y)*(h_out_2-h_in_1)+y*(h_out_11-h_in_3)”the total work in” Q_dot_in=(h_in_5-h_4)+(h_in_7-h_out_6)”the total heat coming into the cycle” eta_1=(W_dot_out-W_dot_in)/Q_dot_in”the first efficiancy” “exergy caculation” x_b=(h_in_5-h_4)-T_O*(s_5-s_4)+(h_in_7-h_out_6)-T_O*(s_7-s_6)”the exergy in ” x_t1=-1*(h_in_5-h_out_6)+(h_in_5-h_out_6)-T_O*(s_5-s_6)”the exergy destraction of the turbine one ” x_t2=-1*(h_in_7-h_out_8)+(h_in_7-h_out_8)-T_O*(s_7-s_8)”the exergy destraction of the turbine two ” x_t3=-1*(1-y)*(h_out_8-h_out_9)+(1-y)*(h_out_8-h_out_9)-T_O*(s_8-s_9)”the exergy destraction of the turbine three ” x_heat_exchanger_1=(1-y)*((h_out_2-h_10)-T_O*(s_2-s_10))+y*((h_out_8-h_in_3)-T_O*(s_8-s_3))”the exergy destraction of CFW ” x_heat_exchanger_2=(1-y)*((h_out_9-h_in_1)-T_O*(s_9-s_1))+j*((h_o-h_cond)-T_O*(s_o-s_cond))”the exergy destraction of condencer ” x_heat_exchanger_3=(1-y)*x_10+y*x_11-x_4″the exergy destraction of OFW ” x_10=(h_10-h_o)-T_o*(s_10-s_o)”mass flow different” x_11=(h_out_11-h_o)-T_o*(s_11-s_o)”mass flow different” x_4=(h_4-h_o)-T_o*(s_4-s_o)”mass flow different” x_p1=(1-y)*(h_out_2-h_in_1)+(1-y)*(h_in_1-h_out_2)-T_O*(s_1-s_2)”the exergy destraction of the pump one ” x_p2=y*(h_out_11-h_in_3)+y*(h_in_3-h_out_11)-T_O*(s_3-s_11)”the exergy destraction of the pump two ” x_lost=(h_o-h_cond)-T_o*(s_o-s_cond)”the lost energy” eta_2=(W_dot_out-W_dot_in)/x_b

Leave a Reply

Your email address will not be published. Required fields are marked *